概要:(板书)(2)特点:两个集合间元素是一对一的关系,不同的对的也一定是不同的(元素个数相同);集合B与象集C是相等的集合.对于映射我们现在了解了它的定义及特殊的映射一一映射,除此之外对于映射还要求能求出指定元素的象与原象.(板书)5.求象与原象.例2 (1)从R到 的映射 ,则R中的-1在 中的象是_____; 中的4在R中的原象是_____.(2)在给定的映射 下,则点 在 下的象是_____, 点 在 下的原象是______.(3) 是集合A到集合B的映射, ,则A 中 元素 的象是_____,B中象0的原象是______, B中象-6的原象是______.由学生先回答第(1)小题,之后让学生自己总结一下,应用什么方法求象和原象,学生找到方法后,再在方法的指导下求解另外两题,若出现问题,教师予以点评,最后小结求象用代入法,求原象用解方程或解方程组.注意:所解的方程解的情况可能有多种如有唯一解,也可能无解,可能有无数解,这与映射的定义也是相吻合的.但如果是一一映射,则方程一定有唯一解.三、小结1.映射是
数学教案-映射,标签:高一数学必修3教案,高一数学必修1教案,http://www.67jx.com(板书)(2)特点:两个集合间元素是一对一的关系,不同的对的也一定是不同的(元素个数相同);集合B与象集C是相等的集合.
对于映射我们现在了解了它的定义及特殊的映射一一映射,除此之外对于映射还要求能求出指定元素的象与原象.
(板书)5.求象与原象.
例2 (1)从R到 的映射 ,则R中的-1在 中的象是_____; 中的4在R中的原象是_____.
(2)在给定的映射 下,则点 在 下的象是_____, 点 在 下的原象是______.
(3) 是集合A到集合B的映射, ,则A 中 元素 的象是_____,B中象0的原象是______, B中象-6的原象是______.
由学生先回答第(1)小题,之后让学生自己总结一下,应用什么方法求象和原象,学生找到方法后,再在方法的指导下求解另外两题,若出现问题,教师予以点评,最后小结求象用代入法,求原象用解方程或解方程组.
注意:所解的方程解的情况可能有多种如有唯一解,也可能无解,可能有无数解,这与映射的定义也是相吻合的.但如果是一一映射,则方程一定有唯一解.
三、小结
1.映射是特殊的对应
2.一一映射是特殊的映射.
3.掌握求象与原象的方法.
四、作业:略
五、板书设计
探究活动
(1) {整数}, {偶数}, ,试问 与 中的元素个数哪个多?为什么?如果我们建立一个由 到 的映射对应法则 乘以2,那么这个映射是一一映射吗?
答案:两个集合中的元素一样多,它们之间可以形成一一映射.
(2)设 , ,问最多可以建立多少种集合 到集合 的不同映射?若将集合 改为 呢?结论是什么?如果将集合 改为 ,结论怎样?若集合 改为 , 改为 ,结论怎样?
从以上问题中,你能归纳出什么结论吗?依此结论,若集合A中含有 个元素,集合B中含有 个元素,那么最多可以建立多少种集合 到集合 的不同映射?
答案:若集合A含有m个元素,集合B含有n个元素,则不同的映射 有 个.