概要:,就必有,有就必有,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.(3) 定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.经学生思考,可找到函数.然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?例2. 已知函数既是奇函数也是偶函数,求证: .(板书) (试由学生来完成)证明:既是奇函数也是偶函数,=,且,=.,即.证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现, 只是解析式的特征,若改变函数的定义域,如,,,,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类(4) 函数按其是否具有奇偶性可分为四
数学教案-函数单调性与奇偶性,标签:高一数学必修3教案,高一数学必修1教案,http://www.67jx.com,就必有 ,有 就必有 ,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?
可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.
(3) 定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)
由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.
经学生思考,可找到函数 .然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?
例2. 已知函数 既是奇函数也是偶函数,求证: .(板书) (试由学生来完成)
证明: 既是奇函数也是偶函数,
= ,且 ,
= .
,即 .
证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现, 只是解析式的特征,若改变函数的定义域,如 , , , ,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类
(4) 函数按其是否具有奇偶性可分为四类: (板书)
例3. 判断下列函数的奇偶性(板书)
(1) ; (2) ; (3) .
由学生回答,不完整之处教师补充.
解: (1)当 时, 为奇函数,当 时, 既不是奇函数也不是偶函数.
(2)当 时, 既是奇函数也是偶函数,当 时, 是偶函数.
(3) 当 时, 于是 ,
当 时, ,于是 = ,
综上 是奇函数.
教师小结 (1)(2)注意分类讨论的使用,(3)是分段函数,当 检验 ,并不能说明 具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须 均有 成立,二者缺一不可.
三. 小结
1. 奇偶性的概念
2. 判断中注意的问题
四. 作业 略
五. 板书设计
2.函数的奇偶性 例1. 例3.
(1) 偶函数定义
(2) 奇函数定义
(3) 定义域关于原点对称是函数 例2. 小结
具备奇偶性的必要条件
(4)函数按奇偶性分类分四类
探究活动(1) 定义域为 的任意函数 都可以表示成一个奇函数和一个偶函数的和,你能试证明之吗?
(2) 判断函数 在 上的单调性,并加以证明.
在此基础上试利用这个函数的单调性解决下面的问题:
设
为三角形的三条边,求证:
.