概要: 4.向量与平面平行:如果表示向量 的有向线段所在直线与平面 平行或 在 平面内,我们就说向量 平行于平面 ,记作 ∥ 。注意:向量 ∥ 与直线a∥ 的联系与区别。 共面向量:我们把平行于同一平面的向量叫做共面向量。 共面向量定理 如果两个向量 、 不共线,则向量 与向量 、 共面的充要条件是存在实数对x、y,使 ① 注:与共线向量定理一样,此定理包含性质和判定两个方面。 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x、y,使 ④ 或对空间任一定点O,有 ⑤ 在平面MAB内,点P对应的实数对(x, y)是唯一的。①式叫做平面MAB的向量表示式。 又∵ 代入⑤,整理得 ⑥ 由于对于空间任意一点P,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P就在平面MAB内;对于平面MAB内的任意一点P,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量 、 (或不共线三点M、A、B)确定的空间平面的向量参数方程,也是M、A、B、P四点共面的充要条件。
空间向量及其应用,标签:高三数学复习教案,高三数学复习课教案,http://www.67jx.com4.向量与平面平行:如果表示向量 的有向线段所在直线与平面 平行或 在 平面内,我们就说向量 平行于平面 ,记作 ∥ 。注意:向量 ∥ 与直线a∥ 的联系与区别。
共面向量:我们把平行于同一平面的向量叫做共面向量。
共面向量定理 如果两个向量 、 不共线,则向量 与向量 、 共面的充要条件是存在实数对x、y,使 ①
注:与共线向量定理一样,此定理包含性质和判定两个方面。
推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x、y,使
④
或对空间任一定点O,有 ⑤
在平面MAB内,点P对应的实数对(x, y)是唯一的。①式叫做平面MAB的向量表示式。
又∵ 代入⑤,整理得
⑥
由于对于空间任意一点P,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P就在平面MAB内;对于平面MAB内的任意一点P,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量 、 (或不共线三点M、A、B)确定的空间平面的向量参数方程,也是M、A、B、P四点共面的充要条件。
5.空间向量基本定理:如果三个向量 、 、 不共面,那么对空间任一向量,存在一个唯一的有序实数组x, y, z, 使
说明:⑴由上述定理知,如果三个向量 、 、 不共面,那么所有空间向量所组成的集合就是 ,这个集合可看作由向量 、 、 生成的,所以我们把{ , , }叫做空间的一个基底, , , 都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的一个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的概念;⑷由于 可视为与任意非零向量共线。与任意两个非零向量共面,所以,三个向量不共面就隐含着它们都不是 。
推论:设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数组 ,使
6.数量积
(1)夹角:已知两个非零向量 、 ,在空间任取一点O,作 , ,则角∠AOB叫做向量 与 的夹角,记作
说明:⑴规定0≤ ≤ ,因而 = ;
⑵如果 = ,则称 与 互相垂直,记作 ⊥ ;
⑶在表示两个向量的夹角时,要使有向线段的起点重合,注意图(3)、(4)中的两个向量的夹角不同,
图(3)中∠AOB= ,
图(4)中∠AOB= ,
从而有 = = .
(2)向量的模:表示向量的有向线段的长度叫做向量的长度或模。
(3)向量的数量积: 叫做向量 、 的数量积,记作 。
即 = ,
向量 :
(4)性质与运算率
⑴ 。 ⑴
⑵ ⊥ =0 ⑵ =
⑶ ⑶
四.典例解析
题型1:空间向量的概念及性质
例1.有以下命题:①如果向量 与任何向量不能构成空间向量的一组基底,那么 的关系是不共线;② 为空间四点,且向量 不构成空间的一个基底,那么点 一定共面;③已知向量 是空间的一个基底,则向量 ,也是空间的一个基底。其中正确的命题是( )
①② ①③ ②③ ①②③
解析:对于①"如果向量 与任何向量不能构成空间向量的一组基底,那么 的关系一定共线";所以①错误。②③正确。
点评:该题通过给出命题的形式考察了空间向量能成为一组基的条件,为此我们要掌握好空间不共面与不共线的区别与联系。
例2.下列命题正确的是( )