概要:由此可以想到,只要把求得的x的值代入所乘的整式(即最简公分母),若该式的值不等于零,则是原方程的根;若该式的值为零,则是原方程的增根.如能保证求解过程正确,则这种验根方法比较简便.例1、解方程 对于例题给学生示范做题的格式、步骤. (投影显示步骤格式)解:方程两边同乘x(x-2),约去分母,得5(x-2)=7x解这个整式方程,得x=5.检验:把x=-5代入最简公分母x(x-2)=35≠0,∴x=-5是原方程的解.例2、解方程 解:方程两边同乘最简公分母(x-2),约去分母,得1=x-1-3(x-2).( -3这项不要忘乘)解这个整式方程,得x=2.检验:当x=2时,代入最简公分母(x-2)=0,∴x=2是增根,∴原方程无解.注意:要求学生一定要严格按解题格式步骤完成. (三)总结解分式方程的一般步骤:1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.2.解这个整式方程.3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.(四)练习教材P.98中1由学生在黑板上写,教师订正.六、作业教材P.101
可化为一元一次方程的分式方程,标签:八年级数学下册教案,八年级数学上册教案,http://www.67jx.com由此可以想到,只要把求得的x的值代入所乘的整式(即最简公分母),若该式的值不等于零,则是原方程的根;若该式的值为零,则是原方程的增根.如能保证求解过程正确,则这种验根方法比较简便.
例1、解方程
对于例题给学生示范做题的格式、步骤. (投影显示步骤格式)
解:方程两边同乘x(x-2),约去分母,得
5(x-2)=7x解这个整式方程,得
x=5.
检验:把x=-5代入最简公分母
x(x-2)=35≠0,
∴x=-5是原方程的解.
例2、解方程
解:方程两边同乘最简公分母(x-2),约去分母,得
1=x-1-3(x-2). ( -3这项不要忘乘)
解这个整式方程,得
x=2.
检验:当x=2时,代入最简公分母(x-2)=0,
∴x=2是增根,
∴原方程无解.
注意:要求学生一定要严格按解题格式步骤完成.
(三)总结
解分式方程的一般步骤:
1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.
2.解这个整式方程.
3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.
(四)练习
教材P.98中1由学生在黑板上写,教师订正.
六、作业
教材P.101中1.
七、板书设计