请关注67教学网 http://www.67jx.com
收藏本站 网站地图

当前位置:67教学网教育文章优秀教案数学教案八年级数学教案立方根» 正文

立方根

[11-13 00:50:49]   来源:http://www.67jx.com  八年级数学教案   阅读:8643

概要:立方根一、教学目标 1.了解立方根和开立方的概念;2.会用根号表示一个数的立方根,掌握开立方运算;3.培养学生用类比的思想求立方根的运算能力;4.由立方与立方根的教学,渗透数学的转化思想;5.通过立方根符号的引入体验数学的简洁美.二、教学重点和难点教学重点:立方根的概念与性质.教学难点:会求某些数的立方根.三、教学方法启发式,讲练结合四、教学手段幻灯片.五、教学过程(www.67jx.com)(一)复习提问请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质?在同学们回答后,启发学生是否可试着给数的立方根下个定义.1.立方根的概念:如果一个数的立方等于a,这个数就叫做a的立方根.(也称数a的三次方根)用数学式表示为:若x3=a,则x叫做a的立方根,或称x叫做a的三次方根.2.立方根的表示方法:类似于平方根德表示方法,数a的立方根我们用符号 来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如

立方根,标签:八年级数学下册教案,八年级数学上册教案,http://www.67jx.com

立方根

一、教学目标

  1.了解立方根和开立方的概念;

  2.会用根号表示一个数的立方根,掌握开立方运算;

  3.培养学生用类比的思想求立方根的运算能力;

  4.由立方与立方根的教学,渗透数学的转化思想;

  5.通过立方根符号的引入体验数学的简洁美.

 二、教学重点和难点

  教学重点:立方根的概念与性质.

  教学难点:会求某些数的立方根.

 三、教学方法

  启发式,讲练结合

 四、教学手段

  幻灯片.

 五、教学过程(www.67jx.com)

  (一)复习提问

  请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质?

  在同学们回答后,启发学生是否可试着给数的立方根下个定义.

  1.立方根的概念:

  如果一个数的立方等于a,这个数就叫做a的立方根.(也称数a的三次方根)

  用数学式表示为:

  若x3=a,则x叫做a的立方根,或称x叫做a的三次方根.

  2.立方根的表示方法:

  类似于平方根德表示方法,数a的立方根我们用符号 来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如 表示125的立方根,而 则表示125的算术平方根.

  练习:用根号表示下列各数的立方根:

  

  

  3.开立方概念:

  求一个数的立方根的运算,叫做开立方.

  

  4.开立方运算与立方运算互为逆运算.

  因此,我们可以根据立方运算来求一些数的立方根.

  例1. 求下列各数的立方根:

  

  解:(1)∵(-2)3=-8,

  

  (2)∵23=8,

  

  

  (4)∵  (0.6)3=0.216,

  

  (5)∵03=0,

  

  

  

  

  

  下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个立方根?负数有没有立方根?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、 这样的正数,有一个正的立方根;像-8、 、 这样的负数有一个负的立方根;0的立方根是0.由此我们得了立方根的性质.

  5.立方根的性质:

  (1)正数有一个正的立方根.

  (2)负数有一个负的立方根.

  (3)0的立方根是0

  这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的立方根;在平方根中负数是没有平方根的,而负数有一个负的立方根;平方根与立方根唯一相同之处是0的平方根,立方根都是它本身.
例2.求下列各式的值:

  

  解:(1)∵33=27,

  

  (2)∵ (-3)3=-27,

  

  

  

  

  (5)∵  (102)3=106,

  

  (6)∵  (103)3=109

  

  例3. 解方程:

  (1)x3=0.125;(2)3(x-4)3-1536=0.

  解:(1)x3=0.125

   

   x=0.5.

  (2)3(x-4)3-1536=0(此题可由学生先做,教师纠正错误)

   3(x-4)3=1536

   (x-4)3=512

   

   x-4=8

   x=12.

  尽管我们学习了立方根,而我们也只能由立方根的定义求解x3=a(a为常数)这一类型的

  简单的三次方程,所以像第(2)小题,我们要把(x-4)看成一个整体,依然转化成为x3=a的形式,再由立方根定义去解.

  填空练习:

  (1)1的平方根是____;立方根为____;算术平方根为____.

[1] [2]  下一页


Tag:八年级数学教案八年级数学下册教案,八年级数学上册教案优秀教案 - 数学教案 - 八年级数学教案

更多《立方根》相关文章