请关注67教学网 http://www.67jx.com
收藏本站 网站地图

当前位置:67教学网教育文章优秀教案数学教案高三数学教案排列教学案例» 正文

排列教学案例

[03-14 14:41:53]   来源:http://www.67jx.com  高三数学教案   阅读:8725

概要: 事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数. 首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法; 其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置. 根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种). 根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况) 第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来. 由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数. 根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个). 请板演的学生谈谈怎样想的? 第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种

排列教学案例,标签:高三数学复习教案,高三数学复习课教案,http://www.67jx.com
    事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.
    首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;
    其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.
    根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).
    根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)
    第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.
    由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.
    根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).
    请板演的学生谈谈怎样想的?
    第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.
    第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.
    第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.
    根据乘法原理,所以共有4×3×2=24种.
    下面由教师提问,学生回答下列问题
    (1)以上我们讨论了三个实例,这三个问题有什么共同的地方?
    都是从一些研究的对象之中取出某些研究的对象.
    (2)取出的这些研究对象又做些什么?
    实质上按着顺序排成一排,交换不同的位置就是不同的情况.
    (3)请大家看书,第×页、第×行. 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.
    上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.
    第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.
    第三个问题呢?
    从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.
    给出排列定义
    请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取m(m≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
    下面由教师提问,学生回答下列问题
    (1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?
    从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的排列.
    如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列.
    再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列.
    (2)还需要搞清楚一个问题,“一个排列”是不是一个数?
    生:“一个排列”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的.
    三、 课堂练习
    大家思考,下面的排列问题怎样解?
    有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)

上一页  [1] [2] [3] [4]  下一页


Tag:高三数学教案高三数学复习教案,高三数学复习课教案优秀教案 - 数学教案 - 高三数学教案

更多《排列教学案例》相关文章