概要: y=150 把y=150代入④,得x=200 所以方程组的解为 即去年的总产值是200万元,总支出为150万元. [生]我们组也解出来了.我觉得刚才的一组在处理方程组中的方程②处理得不彻底,因此,系数是小数,给解方程带来了不必要的麻烦.我们组的解法如下: 解:由②,得1.1x-0.8y=100 方程两边再同时乘以10,得 11x-8y=1000 ③ 由①,得x=50+y ④ 把④代入③,得3y=450 y=150 把y=150代入④,得x=200. [师]不错.能够恰当地利用等式的性质,使问题简化,值得提倡. [生]我们组用的不是代入消元法,我们组是在第二组解法的基础上,用的加减消元法. [师]我们已能用多种方法解方程组,看来我们最关键的一步应是如何根据题意,列出方程组,下面我们再来看一个例子. 出示投影片§7.4 B [例1]医院用甲、乙两种原料为手术后的病人配制营养品.每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0
增收节支教案,标签:七年级下册数学教案,七年级上册数学教案,http://www.67jx.comy=150
把y=150代入④,得x=200
所以方程组的解为
即去年的总产值是200万元,总支出为150万元.
[生]我们组也解出来了.我觉得刚才的一组在处理方程组中的方程②处理得不彻底,因此,系数是小数,给解方程带来了不必要的麻烦.我们组的解法如下:
解:由②,得1.1x-0.8y=100
方程两边再同时乘以10,得
11x-8y=1000 ③
由①,得x=50+y ④
把④代入③,得3y=450
y=150
把y=150代入④,得x=200.
[师]不错.能够恰当地利用等式的性质,使问题简化,值得提倡.
[生]我们组用的不是代入消元法,我们组是在第二组解法的基础上,用的加减消元法.
[师]我们已能用多种方法解方程组,看来我们最关键的一步应是如何根据题意,列出方程组,下面我们再来看一个例子.
出示投影片§7.4 B
[例1]医院用甲、乙两种原料为手术后的病人配制营养品.每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位蛋白质.若病人每餐需要35单位蛋白质和40单位蛋白质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?
[师生共析]我们可以设每餐甲、乙两种原料各x、y克恰好满足病人的需要.根据题意可知每克甲原料含0.5单位蛋白质和1单位铁质,所以x克甲原料含0.5x单位蛋白质和x单位铁质.每克乙原料含0.7单位蛋白质和0.4单位铁质,所以y克乙原料含0.7x单位蛋白质和0.4x单位铁质,因此,我们可列出下列表格:
甲原料x克 乙原料y克 所配制的营养品
其中所含的蛋白质 0.5x单位 0.7y单位 35单位
其中所含的铁质 x单位 0.4y单位 40单位
根据题意,得
化简,得
①-②,得5y=150
y=30
将y=30代入①,得
x=28
所以每餐需甲原料28克,乙原料30克.
Ⅲ.随堂练习
课本P201.
1.解:设一、二两班学生数分别为x名、y名,填写下表:
一班 二班 两班总数
学生数/名 x y 100
达标学生数/名 87.5%x 75%y 81%(x+y)
根据题意,得
化简,得
③+①×60,得125x=6000
x=48
把x=48代入①,得y=52
所以一班有48人,二班有52人.
2.解:设甲、乙两人每时分别行走x千米,y千米,填写下表并求x、y的值.
甲行走的路程 乙行走的路程 两人行走的路程和
第一种情况(甲先走2小时) (2+2.5)x 2.5y (2+2.5)x+2.5y
第二种情况(乙先走2小时) 3x (2+3)y 3x+(2+3)y
根据题意可得:
化简,得
③×2-④得6x=36
x=6
把x=6代入④,得y=3.6
所以,甲乙两人每小时各走6千米,3.6千米.
Ⅳ.课时小结
这节课我们借助于列表分析具体问题中蕴涵的数量关系,使题目中的相等关系随之而清晰地浮现出来.同时,我们通过解二元一次方程组使问题得以解决,提高了列方程组的技能.
Ⅴ.课后作业
1.课本P202习题7.5.
2.总结列二元一次方程组解决实际问题的一般步骤.
Ⅵ.活动与探究
现有两种溶液,甲种溶液由酒精1升,水3升配制而成,乙种溶液由酒精3升,水2升配制而成,要配制成50%的酒精溶液7升,问两种溶液各需多少升?