概要:认识三角形教案2 一、教学目标 (一)知识目标 1.三角形三个角之间的关系. 2.三角形按角进行分类 3.直角三角形的性质. (二)能力目标 1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力. 2.掌握"三角形的内角和等于180°"这个结论,并会按角将三角形分类.了解直角三角形的两锐角之间的关系. (三)情感目标 在学生活动中,培养其相互协作意识及数学表达能力,体验探索、交流与成功. 二、教学重难点 1.教学重点 三角形三个内角的关系.即三角形的内角和为180°. 2.教学难点 利用平行线的特性,得出三角形的内角和. 三、教具准备 三角形纸片. 投影片四张: 第一张:引例(记作投影片§5.1.2 A) 第二张:做一做(记作投影片§5.1.2 B) 第三张:猜一猜(记作投影片§5.1.2 C) 第四张:三角形分类(记作投影片§5.1.2 D) 学生用具:三角
认识三角形教案2,标签:七年级下册数学教案,七年级上册数学教案,http://www.67jx.com认识三角形教案2
一、教学目标(一)知识目标
1.三角形三个角之间的关系.
2.三角形按角进行分类
3.直角三角形的性质.
(二)能力目标
1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力.
2.掌握"三角形的内角和等于180°"这个结论,并会按角将三角形分类.了解直角三角形的两锐角之间的关系.
(三)情感目标
在学生活动中,培养其相互协作意识及数学表达能力,体验探索、交流与成功.
二、教学重难点
1.教学重点
三角形三个内角的关系.即三角形的内角和为180°.
2.教学难点
利用平行线的特性,得出三角形的内角和.
三、教具准备
三角形纸片.
投影片四张:
第一张:引例(记作投影片§5.1.2 A)
第二张:做一做(记作投影片§5.1.2 B)
第三张:猜一猜(记作投影片§5.1.2 C)
第四张:三角形分类(记作投影片§5.1.2 D)
学生用具:三角形纸片
四、教学过程
Ⅰ.巧设现实情景,引入新课
[师]假如你是一名技术人员,现在有一实际问题,你能解决吗?(出示投影片§5.1.2 A)
某水泥厂需要一大型模板.如图5-10,设计时要求BA和CD相交成30°角,DA和CB相交成20°角,怎样通过测量∠A、∠B、∠C、∠D的度数,来检查模板是否合格?
图5-10
图5-11
(学生讨论)
[师]要检验模板是否合格,需要测量∠A、∠B、∠C、∠D的度数,那如何测量呢?从已知可知:BA与CD相交成30°角,DA与CB相交成20°,如图5-11,这时出现了△BCE和△DCF,这样就把所要测量的一些角放到三角形中.只要知道三角形的角之间的关系,这个问题便可解答.那么三角形的三个内角的关系如何呢?我们这一节课就来探讨它.
Ⅱ.讲授新课
[师]在小学,我们曾用量角器量出三角形三个内角的具体度数后,计算它们的和;也曾用折叠一张三角形纸片,把三角形的三个内角拼在一起,得到"三角形三个内角的和等于180°"的结论.
(教师演示)
图5-12
如图5-12的折叠拼合,相当于把三角形的三个内角剪下来拼在一起.其实,拼出:∠A+∠B+∠C=180°的方法有多种多样,大家来拼一拼.
(学生动手拼摆,把具有代表性的拼图贴在黑板上).
图5-13
[师]同学们拼摆得很好,通过把三角形的三个内角撕下来,拼在一起.得到了三角形的内角和为180°.
大家看图(5),这个图只是撕下三角形的一个角,也得到了上面的结论吗?(请贴这个图的学生叙述)
图5-14
[生]因为把∠A撕下后,摆放到∠C那儿后,这时,边a∥b.又由两直线平行,同旁内角互补,就可得到:∠A+∠B+∠C=180°.
[师]噢,大家想一想他说得有道理吗?他是这样做的.(出示投影片§5.1.2 B)
(1)做一个三角形纸片,它的三个内角分别为∠1,∠2和∠3,如图5-15
图5-15 图5-16
(2)将∠A撕下,按图5-16所示进行摆放,其中∠1的顶点与∠2的顶点重合,它的一条边与∠2的一条边重合.
此时∠1的另一条边b与∠3的一条边a平行吗?为什么?
图5-17
(3)如图5-17所示,将∠2与∠3的公共边延长,它与b所夹的角为∠4.∠3与∠4的大小有什么关系?为什么?
现在,你得到这个三角形的内角和了吗?
[生甲]他说得有道理.因为∠1撕下后,摆放到如图5-16的位置,且∠2的顶点与∠1的顶点重合,它的一条边与另一条边重合,这时,实际上就形成了两条直线被第三条直线所截.两个∠1为内错角,由"内错角相等,两直线平行"可得:a∥b.