概要: (2)图中有几对同旁内角?它们的大小有什么关系?为什么? (3)换另一组平行线试一试,你能得到相同的结论吗? (讨论方法同前) [生甲]图中有2对内错角,分别是:∠3与∠6;∠4与∠5. 我用量角器测量了一下,得知:∠3与∠6相等,∠4与∠5也相等. [生乙]不用测量也可以,因为直线a与直线b平行,∠3与∠7是同位角,所以∠3=∠7.又因为∠7与∠6是对顶角,相等,因此可知∠3与∠6相等. ∠4与∠5也可以这样得出. [师]乙同学叙述得很好,学以致用,他找到了内错角与同位角的关系,从而得到:内错角相等.即a∥b→∠3=∠6.推证如下: 接下来,我们来解决第(2)问. [生丙]图中有2对同旁内角,分别是: ∠3与∠5;∠4与∠6. 它们的关系为互补,即: ∠3+∠5=180°,∠4+∠6=180°. 因为:直线a与直线b平行,∠2与∠6是同位角,所以∠2=∠6. 又因为:∠2+∠4=180°, 所以可得:∠4+∠6=180°. 同理也可推证:∠3
平行线的特征教案2,标签:七年级下册数学教案,七年级上册数学教案,http://www.67jx.com(2)图中有几对同旁内角?它们的大小有什么关系?为什么?
(3)换另一组平行线试一试,你能得到相同的结论吗?
(讨论方法同前)
[生甲]图中有2对内错角,分别是:∠3与∠6;∠4与∠5.
我用量角器测量了一下,得知:∠3与∠6相等,∠4与∠5也相等.
[生乙]不用测量也可以,因为直线a与直线b平行,∠3与∠7是同位角,所以∠3=∠7.又因为∠7与∠6是对顶角,相等,因此可知∠3与∠6相等.
∠4与∠5也可以这样得出.
[师]乙同学叙述得很好,学以致用,他找到了内错角与同位角的关系,从而得到:内错角相等.即a∥b→∠3=∠6.推证如下:
接下来,我们来解决第(2)问.
[生丙]图中有2对同旁内角,分别是:
∠3与∠5;∠4与∠6.
它们的关系为互补,即:
∠3+∠5=180°,∠4+∠6=180°.
因为:直线a与直线b平行,∠2与∠6是同位角,所以∠2=∠6.
又因为:∠2+∠4=180°,
所以可得:∠4+∠6=180°.
同理也可推证:∠3+∠5=180°.
[生丁]老师,也可以这样说理由吧:
因为:直线a与直线b平行,∠3与∠6是内错角,所以∠3=∠6,
又因为:∠3+∠4=180°.所以可得:∠6+∠4=180°.因此可知:两条直线平行,同旁内角互补.
[师]同学们讨论.表达得很好.通过找到同旁内角与同位角或内错角的关系,得到了:两直线平行,同旁内角互补.即:
a∥b→∠4+∠6=180°.
推理如下:
或:
好,大家现在换另一组平行线试试,能得到相同的结论吗?
[生齐声]能.
[师]很好.同学们来看大屏幕(动画演示两直线平行,内错角相等或同旁内角互补).
由此我们得到了平行线的特征.(出示投影片§2.3 C)
两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.
简记为:
两直线平行,同位角相等.
两直线平行,内错角相等.
两直线平行,同旁内角互补.
如图2-39,
图2-39
a∥b→
大家再想一想:你还能探索出平行线的哪些特征?
[生甲]在直线a与直线b平行的情况下,如果直线c与直线a垂直,那么直线c必定与直线b垂直.
如图2-39,a∥b→∠1=∠5,当a⊥c时,即∠1=90°,则∠5也等于90°,因此,b⊥c.
(教师也可用电脑动画演示)
[师]很好.接下来我们做一做.(出示投影片§2.3 D)
如图2-40,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.
(1)∠1、∠3的大小有什么关系?∠2与∠4呢?
(2)反射光线BC与EF也平行吗?
图2-40
[师]大家要仔细观察,∠1与∠3是什么样的角,∠2与∠4呢?用自己的语言叙述.
[生乙]从图中可以看出:∠1与∠3是同位角,因为AB与DE是平行的,所以∠1=
∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.
[生丙]因为∠2与∠4是同位角,所以BC∥EF.
[师]很好.同学们来看小华的思考(出示投影片§2.3 E)
我是这样想的.
(1)AB∥DE→∠1=∠3→∠2=∠4
(2)∠2=∠4→BC∥EF.
你能说明每一步的理由吗?与同伴交流一下.
[生丁](1)的第一步的理由:两直线平行,同位角相等.第二步的理由:等量代换.即由:∠1=∠3,∠1=∠2,∠3=∠4,得出∠2=∠4的.
[生戊](2)的理由:同位角相等,两直线平行.
[师]这个题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.