概要: [师]很好,同学们经过讨论分析,得到了与∠1有关系的角. 看:∠1+∠ADC=90°,我们就可以称∠1与∠ADC是互为余角. 再看:∠1+∠BDC=90°,我们也可以称∠1与∠BDC是互为余角. 由此,我们得到了一个新的概念:互为余角.即:如果两个角的和是直角,那么称这两个角互为余角(complementary angle),也就是说其中一个角是另一个角的余角. 只要有∠BDC+∠1=90°,就可知道∠1与∠BDC互为余角,反过来知道∠1与∠BDC是互为余角,就一定知道∠1与∠BDC的和为直角. 再之:∠1与∠BDC是互为余角就是说:∠1是∠BDC的余角,∠BDC也是∠1的余角. 大家看老师手里拿两个三角板(一边演示,一边叙述):这一个三角板的60°的角与另一个三角板的30°的角加起来正好是90°,那么我们说这两个角是互为余角. 同学们应注意:(强调) (1)互为余角是对两个角而言的. (2)互为余角仅仅表明了两个角的数量关系,而没有限制角的位置关系. [生]老师,我们知道了:两
台球桌面上的角教案,标签:七年级下册数学教案,七年级上册数学教案,http://www.67jx.com[师]很好,同学们经过讨论分析,得到了与∠1有关系的角.
看:∠1+∠ADC=90°,我们就可以称∠1与∠ADC是互为余角.
再看:∠1+∠BDC=90°,我们也可以称∠1与∠BDC是互为余角.
由此,我们得到了一个新的概念:互为余角.即:如果两个角的和是直角,那么称这两个角互为余角(complementary angle),也就是说其中一个角是另一个角的余角.
只要有∠BDC+∠1=90°,就可知道∠1与∠BDC互为余角,反过来知道∠1与∠BDC是互为余角,就一定知道∠1与∠BDC的和为直角.
再之:∠1与∠BDC是互为余角就是说:∠1是∠BDC的余角,∠BDC也是∠1的余角.
大家看老师手里拿两个三角板(一边演示,一边叙述):这一个三角板的60°的角与另一个三角板的30°的角加起来正好是90°,那么我们说这两个角是互为余角.
同学们应注意:(强调)
(1)互为余角是对两个角而言的.
(2)互为余角仅仅表明了两个角的数量关系,而没有限制角的位置关系.
[生]老师,我们知道了:两个角的和是直角,则这两个角是互为余角.刚才我们还讨论了:∠1+∠ADF=180°,∠EDB+∠1=180°.
那么这样的两个角又叫什么呢?
[师]这位同学问得好,这就是我们要学习的另一个概念:互为补角.即:如果两个角的和是平角,那么称这两个角互为补角(supplementary angle).
互为补角的概念的理解与互为余角的理解基本一样.哪些同学能尝试的说一下呢?
[生甲]只要满足∠1+∠ADF=180°,就可知道∠1与∠ADF是互为补角.反之知道∠1与∠ADF是互为补角,就一定可知道∠1与∠ADF的和是平角.
[生乙]∠1与∠ADF是互为补角,就是说:∠1是∠ADF的补角,∠ADF也是∠1的补角.
[生丙]互为补角也是对两个角而言的.与角的大小有关,而与位置无关.
[生丁]∠EDB与∠1也是互为补角.
[师]同学们回答得真棒.互为余角、互为补角都是针对两个角而言的,仅仅表示了两个角之间的数量关系,并没有限制角的位置关系.
好,下面大家来想一想.(出示投影片§2.1 A)
在下图中,CD与EF垂直,∠1=∠2.
(1)哪些角互为余角?哪些角互为补角?
(2)∠ADC与∠BDC有什么关系?为什么?
(3)∠ADF与∠BDE有什么关系?为什么?
图2-2
(同学们分组讨论,得结论)
[生甲]在图中:∠1与∠ADC、∠2与∠ADC、∠BDC与∠1、∠BDC与∠2都是互为余角.
∠1与∠ADF、∠EDB与∠1、∠ADF与∠2、∠EDB与∠2都是互为补角.
[生乙]∠ADC与∠BDC相等,因为:
∠ADC+∠1=90°,∠BDC+∠1=90°
所以:∠ADC=90°-∠1=∠BDC.
[生丙]∠ADC与∠BDC相等的理由还可以这样说:因为∠ADC+∠1=90°,∠BDC+∠2=90°,所以∠ADC=90°-∠1,∠BDC=90°-∠2,又因为∠1=∠2,所以∠ADC=∠BDC.
[生丁]老师,是不是这样:∠ADC是∠1的余角,∠BDC也是∠1的余角,所以∠ADC与∠BDC就相等.因此可以说:同一个角的余角相等.∠ADC是∠1的余角,∠BDC是∠2的余角,而∠1与∠2相等.所以∠ADC与∠BDC相等.因此可以说:相等的角的余角相等.
[师]丁同学总结得很好.大家的意见怎么样?
[生齐声]丁同学总结得对.
[师]很好,这就得出互为余角的性质:
同角或等角的余角相等.
接下来看第三个问题:
(同学们踊跃发言,得出结论)
[生]∠ADF与∠BDE相等.因为∠1+∠ADF=180°,∠1+∠BDE=180°,所以,∠ADF=180°-∠1=∠BDE.还可以这样说:
因为∠1+∠ADF=180°,∠2+∠BDE=180°,所以∠ADF=180°-∠1,∠BDE=180°-∠2,又因为∠1=∠2,所以∠ADF=∠EDB.
因此得出结论:
同角或等角的补角相等.